In silico structural and functional analysis of protein encoded by wheat early salt-stress response gene (WESR3).

نویسندگان

  • A K Mishra
  • Gitanjali Tandon
  • Rajendra Sharma
  • H Chandrasekharan
  • P S Pandey
چکیده

Salt stress is one of the major abiotic stresses limiting grain yield in wheat (Triticum aestivum L.). Wheat early salt-stress response gene (WESR3) is one of the major salt stress genes, which is affected in the first phase of salt stress. In this study, sequence and structural analysis of protein coded by WESR3 gene was carried out using various bioinformatics tools. Sequence analysis of WESR3 protein revealed the presence of highly conserved regions of Mlo gene family. Three-dimensional modeling was carried out to elucidate its structure and its active site. The sequence analysis revealed that WESR3 protein might be involved in fungal pathogen attack pathway. Thus, in addition to its involvement in abiotic stresses, it also seemed to play an important part in biotic stress pathways. Out of the three modeled protein structures obtained from I-TASSER, HHPred and QUARK, the I-TASSER protein model was the best model based on high confidence score and lesser number of bad contacts. The Ramchandran plot analysis also showed that all amino acid residues of I-TASSER model lie in the allowed region and thus indicating towards the overall good quality of the predicted model. Seventeen active sites were predicted in the protein bearing resemblance to the Mlo family conserved regions. In conclusion, a detailed analysis of WESR3 protein suggested an important role of WESR3 in biotic and abiotic stress. These results aid to the experimental data and help to build up a complete view of WESR3 proteins and their role in plant stress response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Annotation of Two Hypothetical Proteins Reveals Valuable Proteins Involved in Response to Salinity: An in silico Approach

Through the exponential development in the specification of sequences and structures of proteins by genome sequencing and structural genomics approaches, there is a growing demand for valid bioinformatics methods to define these proteins function. In this study, our objective is to identify the function of unknown proteins from UCB-1 pistachio rootstock and specify their class...

متن کامل

Key Genes Involved in Wheat Response to Salinity Stress and Mapping their Gene Network

Extended Abstract Introduction and Objective: Considering the importance of salinity in wheat and the multigene nature of this trait, the present study was conducted to investigate the expression of key genes involved in the response of wheat to this stress and to create their network. Material and Methods: In this study, the expression of key genes (HKT, DREB, bZIP, NAC, and WARKY) involved...

متن کامل

Comprehensive Computational Analysis of Protein Phenotype Changes Due to Plausible Deleterious Variants of Human SPTLC1 Gene

Genetic variations found in the coding and non-coding regions of a gene are known to influence the structure as well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of α-oxoamine synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT). Mutations in SPTLC1 have been associated with hereditary sensory and auto...

متن کامل

In Silico Characterization of Proteins Containing ARID-PHD Domain and Its Expression in Aeluropus littoralis Halophyte

Abiotic stresses are the most important factors that reduce the yield of crops. In this case, Bioinformatics analysis plays an important role to study genes, and their relatedness as well as prediction their function in response to abiotic stresses. Among all domains, ARID-PHD domain has been identified in plants and animals and has a very significant role in growth regulation, cell cycle, and ...

متن کامل

THE RESPONSE OF FOLIAR PROTEINS IN TWO WHEAT (TRITICUM AESTIVUM) CULTIVARS TO SALT STRESS

Effect of various NaCl treatments (0, 50, 100, 200, and 300 mM) at different growth and development stages (tillering, boot swellen, flowering and anthesis) in two wheat cultivars (Ghods: salt – sensitive, Boolani: salt – resistant) on SDS-PAGE electrophoretic pattern of leaf proteins was studied under greenhouse conditions. Generally, in response to salinity treatments, the decrease in protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Indian journal of biochemistry & biophysics

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 2015